Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257298

RESUMO

Most tablets put on the market are coated with polymers soluble in water. The Opadry II 85 series from Colorcon Inc., is a family of PVA-based products marketed since the 1990s. Despite numerous publications on the properties of PVA, to date, limited work has been undertaken to determine the physico-chemical parameters (i.e., UV light, high temperature, and relative humidity) that could affect the performance of PVA-based coatings. To this end, we performed artificial ageing processes on samples made of Opadry Orange II or of some selected components of this coating and analysed them by means of a multidisciplinary approach, using, for example, FTIR, NMR, rheology, and DMTA measurements. In this way, we analysed the influence of the critical components of the Opadry Orange II formula, such as titanium dioxide and aluminium hydroxide, on the coating characteristics under ageing conditions.

2.
Int J Pharm ; 649: 123640, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043749

RESUMO

Chemotherapy in osteosarcoma treatment has long been stagnating, leaving challenges in the treatment of patients with metastatic and recurrent osteosarcoma. Modulation of macrophages in the tumour microenvironment offers great opportunities to elicit a durable antitumour effect. Here, we employed aluminium hydroxide nanosheets (nAl) to co-deliver the chemotherapy drug doxorubicin (DOX) and immune modulator zoledronic acid (ZA). The hexagon nAl was obtained by a facile approach, with a high positive surface charge for the loading of ZA. With 37% and 8.5% payloads to ZA and DOX, the formed nAl/ZD showed efficient cell growth inhibition to LM8 osteosarcoma cells, and preferential M1 polarization induction to RAW 264.7 macrophage cells. Furthermore, enhanced antitumour effect was observed with nAl/ZD-enabled macrophage activation in the LM8/RAW 264.7 co-culture model. Our results may inspire new treatment strategies for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Hidróxido de Alumínio , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Macrófagos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38140168

RESUMO

Aluminium adjuvants are commonly used in vaccines to boost the effects of vaccination. Here, we assessed the benefits and harms of different aluminium adjuvants vs. other aluminium adjuvants or vs. the same aluminium adjuvant at other concentrations, administered a different number of doses, or at different particle sizes used in vaccines or vaccine excipients. We conducted a systematic review with meta-analysis and Trial Sequential Analysis to assess the certainty of evidence with Grading of Recommendations Assessment, Development and Evaluation (GRADE). We obtained data from major medical databases until 20 January 2023 and included 10 randomized clinical trials of healthy volunteers. The comparisons assessed higher vs. lower aluminium adjuvant concentrations; higher vs. lower number of doses of aluminium adjuvant; and aluminium phosphate adjuvant vs. aluminium hydroxide adjuvant. For all three comparisons, meta-analyses showed no evidence of a difference on all-cause mortality, serious adverse events, and adverse events considered non-serious. The certainty of evidence was low to very low. None of the included trials reported on quality of life or proportion of participants who developed the disease being vaccinated against. The benefits and harms of different types of aluminium adjuvants, different aluminium concentrations, different number of doses, or different particle sizes, therefore, remain uncertain.

4.
Virol J ; 20(1): 221, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789354

RESUMO

BACKGROUND: The live-attenuated Rift Valley Fever Smithburn (SB) vaccine is one of the oldest products widely used in ruminants for control of RVF infections. Vaccinations with RVF Smithburn result in residual pathogenic effect and is limited for use in non-pregnant animals. Commercially available RVFV inactivated vaccines are considered safer options to control the disease. These products are prepared from virulent RVFV isolates and present occupational safety concerns. This research study evaluates the ability of an inactivated SB vaccine strain to elicit neutralising antibody response in sheep. METHODS: The RVF Smithburn vaccine was inactivated with binary ethylenimine at 37 °C. Inactivated RVFV cultures were adjuvanted with Montande™ Gel-01 and aluminium hydroxide (Al (OH)3) gel for immunogenicity and safety determination in sheep. The commercial RVF inactivated vaccine and a placebo were included as positive and negative control groups, respectively. RESULTS: Inactivated RVFV vaccine formulations were safe with all animals showing no clinical signs of RVFV infection and temperature reactions following prime-boost injections. The aluminium hydroxide formulated vaccine induced an immune response as early as 14 days post primary vaccination with neutralising antibody titre of 1:20 and a peak antibody titre of 1:83 was reached on day 56. A similar trend was observed in the animal group vaccinated with the commercial inactivated RVF vaccine obtaining the highest antibody titre of 1:128 on day 56. The neutralizing antibody levels remained within a threshold for the duration of the study. Merino sheep vaccinated with Montanide™ Gel-01-Smithburn were characterised with overall lower immune response when compared to aluminium hydroxide vaccine emulsions. CONCLUSIONS: These finding suggests that the inactivated RVF Smithburn vaccine strain adjuvanted with aluminium-hydroxide can be used an alternative to the products prepared from virulent RVFV isolates for protection of ruminants against the disease. The vaccine can further be evaluated for safety in pregnant ewes.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Vacinas Virais , Animais , Feminino , Hidróxido de Alumínio , Anticorpos Neutralizantes , Anticorpos Antivirais , Febre do Vale de Rift/prevenção & controle , Ruminantes , Ovinos , Doenças dos Ovinos/prevenção & controle , Vacinas Atenuadas , Vacinas de Produtos Inativados/efeitos adversos
5.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680000

RESUMO

Although aluminium-based vaccines have been used for almost over a century, their mechanism of action remains unclear. It is established that antigen adsorption to the adjuvant facilitates delivery of the antigen to immune cells at the injection site. To further increase our understanding of aluminium-based vaccines, it is important to gain additional insights on the interactions between the aluminium and antigens, including antigen distribution over the adjuvant particles. Immuno-assays can further help in this regard. In this paper, we evaluated how established formulation strategies (i.e., sequential, competitive, and separate antigen addition) applied to four different antigens and aluminium oxyhydroxide, lead to formulation changes over time. Results showed that all formulation samples were stable, and that no significant changes were observed in terms of physical-chemical properties. Antigen distribution across the bulk aluminium population, however, did show a maturation effect, with some initial dependence on the formulation approach and the antigen adsorption strength. Sequential and competitive approaches displayed similar results in terms of the homogeneity of antigen distribution across aluminium particles, while separately adsorbed antigens were initially more highly poly-dispersed. Nevertheless, the formulation sample prepared via separate adsorption also reached homogeneity according to each antigen adsorption strength. This study indicated that antigen distribution across aluminium particles is a dynamic feature that evolves over time, which is initially influenced by the formulation approach and the specific adsorption strength, but ultimately leads to homogeneous formulations.

6.
Vaccine ; 40(40): 5835-5841, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36064670

RESUMO

BACKGROUND: To meet the demand for effective and affordable inactivated polio vaccines (IPVs), a reduced dose, aluminium hydroxide (Al(OH)3)-adjuvanted IPV vaccine was developed (IPV-Al, Picovax®) and evaluated in clinical trials. The present trial is an extension of two previous trials (a primary and a booster trial). The aim was to evaluate the persistence of seroprotective antibodies (poliovirus type-specific antibody titre ≥ 8) in 4-year-old children who previously received IPV-Al as primary and booster vaccine doses and to determine the potential booster response and safety profile of an additional dose of IPV-Al. METHODS: Children participating in the two previous trials were invited to receive one additional dose of IPV-Al at 4 years of age (2.5 years after the booster dose) and to have their blood samples collected to measure the pre- and post-vaccination antibody titres. Systemic adverse events (AEs) and local reactogenicity were recorded. RESULTS: At study entry, the seroprotection rates were 89.2%, 100% and 91.1% against poliovirus type 1, 2 and 3, respectively. The additional vaccination with IPV-Al boosted the level of poliovirus type 1, 2 and 3 antibodies to above the seroprotection threshold for all but one subject, i.e., 99.4% for type 1 and 100% for types 2 and 3. The additional dose induced a robust booster response of a 26.3-, 13.9- and 30.9-fold increase in titre for poliovirus types 1, 2 and 3, respectively. The vaccine was well tolerated, with only mild and transient AEs reported. CONCLUSIONS: The present trial demonstrated that the primary vaccination with an aluminium-adjuvanted reduced dose IPV induced a persistent immune memory as evidenced by the robust anamnestic response when the subjects were re-exposed to the antigen 2.5 years after the last dose. Thus, the IPV-Al is an efficient and safe addition to increase the availability of inactivated polio vaccines globally. (ClinicalTrials.gov reg no. NCT04448132).


Assuntos
Poliomielite , Poliovirus , Adjuvantes Imunológicos , Alumínio , Anticorpos Antivirais , Pré-Escolar , Humanos , Imunização Secundária/efeitos adversos , Lactente , Poliomielite/etiologia , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado
7.
Immunol Invest ; 51(7): 2066-2085, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35950702

RESUMO

BACKGROUND: Immunization is the key to prevent invasive meningococcal disease (IMD), caused by Neisseria meningitidis. Outer membrane vesicles (OMVs) can be used as meningococcal antigens. METHODS: Isogenic mice A/Sn (H2a) were immunized with low antigenic doses of OMVs of an N. meningitidis C:2a:P1.5 strain, via intranasal/intramuscular route, adjuvanted by cholera toxin subunit B (CTB) or via intramuscular route only, adjuvanted by aluminium hydroxide (AH). Mice were followed until old age and humoral and cellular responses were assessed by ELISA, Immunoblotting, Dot-blot, Serum-bactericidal assay, Immunohistochemistry and ELISpot. RESULTS: OMV+CTB and OMV+AH groups presented statistically higher antibodies titers, which persisted until middle and old ages. IgG isotypes point to a Th2 type of response. Avidity indexes were considered high, regardless of adjuvant use, but only groups immunized with OMVs and adjuvants (OMV+CTB and OMV+AH) presented bactericidal activity. The antibodies recognized antigens of molecular weights attributed to porin and cross-reactivity proteins. Although the spleen of old mice did not present differences in immunohistochemistry marking of CD68+, CD4+, CD79+ and CD25+ cells, splenocytes of immune groups secreted IL-4 and IL-17 when stimulated with OMVs and meningococcal C polysaccharide. CONCLUSION: We concluded that both adjuvants, CTB and AH, improved the immunogenicity of low doses of OMVs and contributed to a persistent immune response. Even though AH is well established in the vaccinology area, CTB seems to be a promising adjuvant candidate for meningococcal vaccines: it is suitable for mucosal delivery and supports a Th2 type of response. Therefore, OMVs are still a relevant vaccine platform.


Assuntos
Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo C , Neisseria meningitidis , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Anticorpos Antibacterianos , Toxina da Cólera , Imunização , Imunoglobulina G , Memória Imunológica , Interleucina-17 , Interleucina-4 , Camundongos , Polissacarídeos , Porinas , Sorogrupo
8.
Vet Res Commun ; 46(4): 1097-1109, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35927371

RESUMO

Edwardsiella tarda is considered one of the important bacterial fish pathogens. The outer membrane proteins (OMPs) of E. tarda are structurally and functionally conserved, and immunogenic. This study assessed the effects of the OMPs of E. tarda CGH9 as a vaccine without aluminium hydroxide [AH] (T1) and with AH adjuvant (T2) on the respiratory burst (ROB) activity, lymphocyte proliferation of head kidney (HK) leukocytes, and serum antibody production in pangas catfish Pangasius pangasius. The ROB activity and lymphocyte proliferation of HK leukocytes increased in both vaccinated groups compared to the control. Nonetheless, the T2 group showed a gradual increase in ROB activity and lymphocyte proliferation of HK leukocytes up to 3-weeks post-vaccination (wpv). The serum antibody production in the T1 group decreased initially for up to 2-wpv and increased from 3-wpv; whereas, in the T2 group, the serum-specific antibody levels were significantly high from 1-wpv compared to control. Simultaneously, the protective efficacy in terms of relative percentage survival in the T2 group after injecting with a lethal dose of E. tarda CGH9 was high (89.00±15.56) compared to the T1 group (78.00±0.00). Furthermore, the catfish administered with a booster dose of E. tarda OMPs with or without AH adjuvant showed no additional increase in immune response or protective immunity. These results suggested that E. tarda OMPs and AH adjuvant complex has a higher potential to induce protective immunity, which may be a good choice as a vaccine to combat E. tarda infection in catfish.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Edwardsiella tarda , Hidróxido de Alumínio/farmacologia , Proteínas de Membrana , Vacinas Bacterianas , Doenças dos Peixes/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária , Anticorpos Antibacterianos , Adjuvantes Imunológicos/farmacologia , Imunidade
9.
Vaccine ; 40(38): 5601-5607, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35999078

RESUMO

Safety and potency assessment for batch release testing of established vaccines still relies partly on animal tests. An important avenue to move to batch release without animal testing is the consistency approach. This approach is based on thorough characterization of the vaccine to identify critical quality attributes that inform the use of a comprehensive set of non-animal tests to release the vaccine, together with the principle that the quality of subsequent batches follows from their consistent production. Many vaccine antigens are by themselves not able to induce a protective immune response. The antigens are therefore administered together with adjuvant, most often by adsorption to aluminium salts. Adjuvant function is an important component of vaccine potency, and an important quality attribute of the final product. Aluminium adjuvants are capable of inducing NLRP3 inflammasome activation. The aim of this study was to develop and evaluate an in vitro assay for NLRP3 inflammasome activation by aluminium-adjuvanted vaccines. We evaluated the effects of Diphtheria-Tetanus-acellular Pertussis combination vaccines from two manufacturers and their respective adjuvants, aluminium phosphate (AP) and aluminium hydroxide (AH), in an in vitro assay for NLRP3 inflammasome activation. All vaccines and adjuvants tested showed a dose-dependent increase in IL-1ß production and a concomitant decrease in cell viability, suggesting NLRP3 inflammasome activation. The results were analysed by benchmark dose modelling, showing a similar 50% effective dose (ED50) for the two vaccine batches and corresponding adjuvant of manufacturer A (AP), and a similar ED50 for the two vaccine batches and corresponding adjuvant of manufacturer B (AH). This suggests that NLRP3 inflammasome activation is determined by the adjuvant only. Repeated freeze-thaw cycles reduced the adjuvant biological activity of AH, but not AP. Inflammasome activation may be used to measure adjuvant biological activity as an important quality attribute for control or characterization of the adjuvant.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Difteria , Tétano , Coqueluche , Adjuvantes Imunológicos/farmacologia , Alumínio , Hidróxido de Alumínio/farmacologia , Anticorpos Antibacterianos , Linhagem Celular , Difteria/prevenção & controle , Vacina contra Difteria, Tétano e Coqueluche , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Vacina contra Coqueluche , Tétano/prevenção & controle , Coqueluche/prevenção & controle
10.
Diseases ; 10(3)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35892740

RESUMO

The meningococcal disease is a global health threat, but is preventable through vaccination. Adjuvants improve meningococcal vaccines and are able to trigger different aspects of the immune response. The present work evaluated the immune response of mice against Neisseria meningitidis outer membrane vesicles (OMV) complexed with the adjuvants aluminium hydroxide (AH), via subcutaneous route; and dimethyldioctadecylammonium bromide (DDA) or Saponin (Sap), via intranasal/subcutaneous routes. ELISA demonstrated that all adjuvants increased IgG titers after the booster dose, remaining elevated for 18 months. Additionally, adjuvants increased the avidity of the antibodies and the bactericidal titer: OMVs alone were bactericidal until 1:4 dilution but, when adjuvanted by Alum, DDA or Sap, it increased to 1/32. DDA and Sap increased all IgG isotypes, while AH improved IgG1 and IgG2a levels. Thus, Sap led to the recognition of more proteins in Immunoblot, followed by DDA and AH. Sap and AH induced higher IL-4 and IL-17 release, respectively. The use of adjuvants improved both cellular and humoral immune response, however, each adjuvant contributed to particular parameters. This demonstrates the importance of studying different adjuvant options and their suitability to stimulate different immune mechanisms, modulating the immune response.

11.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019545

RESUMO

Aluminium salts have been the adjuvant of choice in more than 100 licensed vaccines. Here, we have studied the synergistic effect of aluminium hydroxide nanoparticles (AH np) and non-ionic surfactant-based vesicles (NISV) in modulating the immune response against protective antigen domain 4 (D4) of Bacillus anthracis. NISV was prepared from Span 60 and cholesterol, while AH np was prepared from aluminium chloride and sodium hydroxide. AH np was co-administered with NISV encapsulating D4 (NISV-D4) to formulate AHnp/NISV-D4. The antigen-specific immune response of AHnp/NISV-D4 was compared with that of commercial alhydrogel (alhy) co-administered with NISV-D4 (alhydrogel/NISV-D4), NISV-D4, AHnp/D4, and alhydrogel/D4. Co-administration of NISV-D4 with AH np greatly improved the D4-specific antibody titer as compared to the control groups. Based on IgG isotyping and ex vivo cytokine analysis, AHnp/NISV-D4 generated a balanced Th1/Th2 response. Furthermore, AH np/NISV-D4 showed superior protection against anthrax spore challenge in comparison to other groups. Thus, we demonstrate the possibility of developing a novel combinatorial nanoformulation capable of augmenting both humoral and cellular response, paving the way for adjuvant research.

12.
FASEB J ; 34(10): 14024-14041, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860638

RESUMO

Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so-called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)-adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET-formation. Moreover, we characterized the mechanism leading to alum-induced NET-release in human neutrophils as rapid, NADPH oxidase-independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+ -flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET-release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum-containing vaccines in humans and provides novel insights into bioenergetic requirements of NET-formation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Armadilhas Extracelulares , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Glicólise , Humanos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Fosforilação Oxidativa
13.
Reumatologia ; 58(3): 167-172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684650

RESUMO

Macrophagic myofasciitis (MMF) is a rare immune-mediated myopathy that seems to be triggered by aluminium hydroxide adjuvant used in vaccines. Its presentation is relatively heterogeneous and treatment with steroids leads to improvement, although there is little evidence regarding the role of other immunosuppressants. The histological findings in MMF seem to be the result of an abnormal presence in the inoculation site of aluminium, which can induce an immune-mediated muscular disease in susceptible persons. The authors describe the case of a patient with an atypical presentation of macrophagic myofasciitis, with histological confirmation in a muscle biopsy distant from the inoculation site, and a good therapeutic response to tacrolimus and mycophenolate mofetil, as well as a discussion on the pathologic basis, controversies and emerging treatments for this condition.

14.
Carbohydr Polym ; 245: 116534, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718636

RESUMO

In Europe, the use of aluminium(III) compounds, namely AlK(SO4)2·12H2O and later on Al2(SO4)3·18H2O for hardening gelatin sizes was recorded as early as the 16th century. This review is focused on the critical assessment of published data concerning the following chemical aspects of paper degradation: direct influence of H3O+ ions formed during hydrolysis of aluminium(III) species; influence of low-molecular organic acids formed within degradation processes; influence of pH variation on the redox potential of reactive oxygen species acting as oxidizing agent; consequences of the absorption of gaseous NO2 and SO2 present in the air for paper degradation; involvement of aluminium species in redox radical oxidation catalytic processes; possible effect of the coordination of Al(III) with small radius and high charge on oxygen atoms of cellulose carboxyl or hydroxyl groups. It is indicated how the understanding of the above mentioned effects can help slow down paper degradation.

15.
Vaccine ; 38(21): 3780-3789, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32273184

RESUMO

BACKGROUND: Availability of affordable inactivated polio vaccines (IPV) is of major importance to meet the increasing global supply needs. The results presented here demonstrate non-inferiority of a reduced-dose, aluminium hydroxide-adjuvanted IPV (IPV-Al) to standard IPV. METHODS: A phase 3, observer-blinded, randomised, clinical trial was conducted in Panama in infants who received either IPV-Al (n = 400) or standard IPV (n = 400) at age 2, 4 and 6 months. In the booster trial, subjects received a single dose of IPV-Al at age 15-18 months. The primary endpoint was type-specific seroconversion, defined as an antibody titre ≥4-fold higher than the estimated maternal antibody titre and a titre ≥8, one month after the primary vaccination series. In the booster trial, the primary endpoint was the type-specific booster effects (geometric mean titre (GMT) post-booster (Day 28)/GMT pre-booster (Day 0). RESULTS: Seroconversion rates following primary vaccination with IPV-Al vs IPV were: 96.1% vs 100% (type 1); 100% vs 100% (type 2); and 99.2% vs 100% (type 3) respectively. IPV-Al was non-inferior to IPV, as the lower 95% confidence limits of the treatment differences were above the pre-defined -10%-point limit: 3.94% (-6.51; -2.01) for type 1; 0.0% (-1.30; -1.37) for type 2; -0.85 (-2.46; 0.40) for type 3. The booster effects for the group primed with IPV-Al versus the group primed with IPV were 25.3 vs 9.2 (type 1), 19.1 vs 6.5 (type 2) and 50.4 vs 12.5 (type 3). IPV-Al had a comparable safety profile to that of IPV. CONCLUSIONS: Non-inferiority of IPV-Al to standard IPV with respect to seroconversion after vaccination at 2, 4 and 6 months was confirmed for all three poliovirus serotypes. A robust booster response was demonstrated following vaccination with IPV-Al, regardless of the primary vaccine received. Both vaccines were well tolerated. ClinicalTrials.gov identifiers: NCT03025750 and NCT03671616. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Imunização Secundária , Imunogenicidade da Vacina , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/administração & dosagem , Anticorpos Antivirais , Feminino , Humanos , Esquemas de Imunização , Lactente , Masculino , Panamá , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacinação
16.
Vaccine ; 38(3): 530-538, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31703934

RESUMO

BACKGROUND: A dose-sparing inactivated polio vaccine (IPV-Al), obtained by adsorption of inactivated virus to an aluminium hydroxide adjuvant, can help mitigate global supply and the cost constraints of IPV. The objective of this trial was to demonstrate the non-inferiority of IPV-Al to standard IPV. METHODS: This phase 3, observer-blinded, randomised, controlled trial was conducted at 5 investigational sites in the Philippines. Infants not previously vaccinated with any polio vaccines were randomised to receive three IPV-Al (n = 502) or IPV vaccinations (n = 500) at 6, 10 and 14 weeks of age plus a booster vaccination at 9 months. The primary endpoint was type-specific seroconversion, defined as an antibody titre ≥4-fold higher than the estimated maternal antibody titre and a titre ≥8, one month after the primary vaccination series. RESULTS: Seroconversion rates following primary vaccination with IPV-Al (483 infants in the per-protocol analysis set) or IPV (478 infants) were: polio type 1, 97.1% versus 99.0%; type 2, 94.2% versus 99.0%; and type 3, 98.3% versus 99.6%. IPV-Al was non-inferior to IPV, as the lower 95% confidence limits of the treatment differences were above the predefined -10%-point limit: type 1, -1.85% (-3.85; -0.05); type 2, -4.75% (-7.28; -2.52); type 3, -1.24 (-2.84; 0.13). The booster effect (geometric mean titre (GMT) post-booster / GMT pre-booster) was: type 1, 63 versus 43; type 2, 54 versus 47; type 3, 112 versus 80. IPV-Al was well tolerated with a safety profile comparable to that of IPV. Serious adverse events were recorded for 29 infants (5.8%, 37 events) in the IPV-Al group compared to 28 (5.6%, 48 events) in the IPV group. CONCLUSION: Non-inferiority of IPV-Al to IPV with respect to seroconversion was confirmed and a robust booster response was demonstrated. Both vaccines had a similar safety profile. ClinicalTrials.gov identifier: NCT03032419.


Assuntos
Hidróxido de Alumínio/administração & dosagem , Imunogenicidade da Vacina , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/administração & dosagem , Hidróxido de Alumínio/efeitos adversos , Hidróxido de Alumínio/imunologia , Feminino , Humanos , Imunogenicidade da Vacina/efeitos dos fármacos , Imunogenicidade da Vacina/imunologia , Lactente , Masculino , Filipinas/epidemiologia , Poliomielite/imunologia , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacina Antipólio de Vírus Inativado/imunologia , Método Simples-Cego
17.
J Anim Physiol Anim Nutr (Berl) ; 102(4): 977-985, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29740890

RESUMO

This study was conducted to investigate the efficacy of in ovo administration of aluminium hydroxide (AH) and/or mannan oligosaccharide (MOS) adjuvants along with lentogenic VG/GA strain-Avinew to alleviate the embryonic pathogenicity of Newcastle disease virus. Six hundred and thirty fertilized Bovans eggs were divided into nine groups of 70 each incubated in a commercial hatchery and administered with eight types of in ovo injections in a factorial design of 2 × 2 × 2 including with/without AH, MOS and Newcastle disease vaccine (NDV), and one uninjected group on day 18 of incubation. Hatchability was higher in the eggs received MOS and/or AH adjuvants plus NDV compared those injected with NDV alone which confirmed the attenuation of NDV. However, the average daily feed intake and feed conversion ratio of pullets hatched from NDV-injected eggs were significantly reduced, but did not affect growth performance during 0-42 days of age. The performance of pullets hatched from eggs injected with AH, MOS or their mixture with NDV was not significantly different during all growth periods. Pullets from MOS + vaccine injected eggs had significantly higher antibody titres against NDV compared to those hatched from either injected with saline or uninjected on d 28 (p < .05). In addition, AH plus vaccine and MOS significantly improved total anti-SRBC and IgG respectively. Histological observation revealed that injection of MOS adjuvant into eggs led to increase crypt depth, whereas AH injection caused a reduction in villus surface area of jejunum in chicks on d 14 post-hatch. It is concluded that in ovo MOS injection as compared to AH may be more effective to attenuate the embryonic pathogenicity of in ovo NDV injection.


Assuntos
Embrião de Galinha , Doença de Newcastle/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Embrião de Galinha/crescimento & desenvolvimento , Embrião de Galinha/imunologia , Embrião de Galinha/fisiologia , Galinhas , Feminino , Vírus da Doença de Newcastle/imunologia , Vacinas Virais/administração & dosagem
18.
Mem. Inst. Oswaldo Cruz ; 112(12): 812-816, Dec. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-894861

RESUMO

BACKGROUND The B subunit of Escherichia coli heat-labile enterotoxin (LTB) is a potent mucosal immune adjuvant. However, there is little information about LTB's potential as a parenteral adjuvant. OBJECTIVES We aimed at evaluating and better understanding rLTB's potential as a parenteral adjuvant using the fused R1 repeat of Mycoplasma hyopneumoniae P97 adhesin as an antigen to characterise the humoral immune response induced by this construct and comparing it to that generated when aluminium hydroxide is used as adjuvant instead. METHODS BALB/c mice were immunised intraperitoneally with either rLTBR1 or recombinant R1 adsorbed onto aluminium hydroxide. The levels of systemic anti-rR1 antibodies (total Ig, IgG1, IgG2a, and IgA) were assessed by enzyme-linked immunosorbent assay (ELISA). The ratio of IgG1 and IgG2a was used to characterise a Th1, Th2, or mixed Th1/Th2 immune response. FINDINGS Western blot confirmed rR1, either alone or fused to LTB, remained antigenic; anti-cholera toxin ELISA confirmed that LTB retained its activity when expressed in a heterologous system. Mice immunised with the rLTBR1 fusion protein produced approximately twice as much anti-rR1 immunoglobulins as mice vaccinated with rR1 adsorbed onto aluminium hydroxide. Animals vaccinated with either rLTBR1 or rR1 adsorbed onto aluminium hydroxide presented a mixed Th1/Th2 immune response. We speculate this might be a result of rR1 immune modulation rather than adjuvant modulation. Mice immunised with rLTBR1 produced approximately 1.5-fold more serum IgA than animals immunised with rR1 and aluminium hydroxide. MAIN CONCLUSIONS The results suggest that rLTB is a more powerful parenteral adjuvant than aluminium hydroxide when administered intraperitoneally as it induced higher antibody titres. Therefore, we recommend that rLTB be considered an alternative adjuvant, even if different administration routes are employed.


Assuntos
Animais , Feminino , Camundongos , Toxinas Bacterianas/toxicidade , Adjuvantes Imunológicos/administração & dosagem , Adesinas Bacterianas/imunologia , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/imunologia , Pneumonia Suína Micoplasmática/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Enterotoxinas/administração & dosagem , Suínos , Ensaio de Imunoadsorção Enzimática , Mycoplasma hyopneumoniae , Hidróxido de Alumínio
19.
Environ Toxicol Pharmacol ; 49: 179-187, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28068585

RESUMO

Arsenate (AsV) and arsenite (AsIII) are typical sources of acute and chronic arsenic poisoning. Therefore, reducing inner exposure to these arsenicals is a rational objective. Because AsV mimics phosphate, phosphate binder drugs may decrease the intestinal AsV absorption. Indeed, lanthanum and aluminium salts and sevelamer removed AsV from solution in vitro, especially at acidic pH. In mice gavaged with AsV, lanthanum chloride, lanthanum carbonate and aluminium hydroxide given orally also lowered the urinary excretion and tissue levels of AsV and its metabolites, indicating that they decreased the gastrointestinal AsV absorption. As some glucose transporters may carry AsIII, the effect of the SGLT2 inhibitor dapagliflozin was investigated in AsIII-injected mice. While producing extreme glucosuria, dapagliflozin barely affected the urinary excretion and tissue concentrations of AsIII and its metabolites. Thus, phosphate binders (especially lanthanum compounds) can reduce the gastrointestinal absorption of AsV; however, SGLT2 inhibition cannot diminish the renal reabsorption of AsIII.


Assuntos
Hidróxido de Alumínio/farmacologia , Arseniatos/farmacocinética , Lantânio/farmacologia , Animais , Arseniatos/sangue , Arseniatos/urina , Arsenitos/urina , Compostos Benzidrílicos/farmacologia , Feminino , Absorção Gastrointestinal/efeitos dos fármacos , Glucosídeos/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Fosfatos , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose
20.
Vaccine ; 35(4): 596-604, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28027810

RESUMO

BACKGROUND: There is a demand of affordable IPV in the World. Statens Serum Institut (SSI) has developed three reduced dose IPV formulations adsorbed to aluminium hydroxide; 1/3 IPV-Al, 1/5 IPV-Al and 1/10 IPV-Al SSI, and now report the results of the first investigations in humans. METHODS: 240 Danish adolescents, aged 10-15years, and childhood vaccinated with IPV were booster vaccinated with 1/3 IPV-Al, 1/5 IPV-Al, 1/10 IPV-Al or IPV Vaccine SSI. The booster effects (GMTRs) of the three IPV-Al SSI were compared to IPV Vaccine SSI, and evaluated for non-inferiority. IMMUNOGENICITY RESULTS: The pre-vaccination GMTs were similar across the groups; 926 (type 1), 969 (type 2) and 846 (type 3) in the total trial population. The GMTRs by poliovirus type and IPV formulation were: Type 1: 17.0 (1/3 IPV-Al), 13.0 (1/5 IPV-Al), 7.1 (1/10 IPV-Al) and 42.2 (IPV Vaccine SSI). Type 2: 12.5 (1/3 IPV-Al), 13.1 (1/5 IPV-Al), 7.6 (1/10 IPV-Al) and 47.8 (IPV Vaccine SSI). Type 3: 14.5 (1/3 IPV-Al), 16.2 (1/5 IPV-Al), 8.9 (1/10 IPV-Al) and 62.4 (IPV Vaccine SSI) Thus, the three IPV-Al formulations were highly immunogenic, but inferior to IPV Vaccine SSI, in this booster vaccination trial. SAFETY RESULTS: No SAE and no AE of severe intensity occurred. 59.2% of the subjects reported at least one AE. Injection site pain was the most frequent AE in all groups; from 24.6% to 43.3%. Injection site redness and swelling frequencies were<5% in most and<10% in all groups. The most frequent systemic AEs were fatigue (from 8.2% to 15.0%) and headache (from 15.0% to 28.3%). Most AEs were of mild intensity. In conclusion, the three IPV-Al SSI were safe in adolescents and the booster effects were satisfactory. ClinicalTrials.gov registration number: NCT02280447.


Assuntos
Imunização Secundária/métodos , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacina Antipólio de Vírus Inativado/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Hidróxido de Alumínio/administração & dosagem , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Dinamarca , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Humanos , Lactente , Masculino , Vacina Antipólio de Vírus Inativado/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...